使用 可以用 SQL 进行 elasticsearch 的查询。有的时候分桶聚合之后会产生很多的桶,我们只对其中部分的桶关心。最简单的办法就是排序之后然后取前几位的结果。
ORDER BY _term
SQL
$ cat << EOF | ./es_query.py http://127.0.0.1:9200SELECT ipo_year, COUNT(*) FROM symbol GROUP BY ipo_year ORDER BY ipo_year LIMIT 2EOF
{"COUNT(*)": 4, "ipo_year": 1972}{"COUNT(*)": 1, "ipo_year": 1973}
Elasticsearch
{ "aggs": { "ipo_year": { "terms": { "field": "ipo_year", "order": [ { "_term": "asc" } ], "size": 2 }, "aggs": {} } }, "size": 0}
因为 ipo_year 是 GROUP BY 的字段,所以按这个排序用_term指代。
{ "hits": { "hits": [], "total": 6714, "max_score": 0.0 }, "_shards": { "successful": 1, "failed": 0, "total": 1 }, "took": 3, "aggregations": { "ipo_year": { "buckets": [ { "key": 1972, "doc_count": 4 }, { "key": 1973, "doc_count": 1 } ], "sum_other_doc_count": 2893, "doc_count_error_upper_bound": 0 } }, "timed_out": false}
ORDER BY _count
SQL
$ cat << EOF | ./es_query.py http://127.0.0.1:9200SELECT ipo_year, COUNT(*) AS ipo_count FROM symbol GROUP BY ipo_year ORDER BY ipo_count LIMIT 2EOF
{"ipo_count": 1, "ipo_year": 1973}{"ipo_count": 2, "ipo_year": 1980}
Elasticsearch
{ "aggs": { "ipo_year": { "terms": { "field": "ipo_year", "order": [ { "_count": "asc" } ], "size": 2 }, "aggs": {} } }, "size": 0}
{ "hits": { "hits": [], "total": 6714, "max_score": 0.0 }, "_shards": { "successful": 1, "failed": 0, "total": 1 }, "took": 2, "aggregations": { "ipo_year": { "buckets": [ { "key": 1973, "doc_count": 1 }, { "key": 1980, "doc_count": 2 } ], "sum_other_doc_count": 2895, "doc_count_error_upper_bound": -1 } }, "timed_out": false}
ORDER BY 指标
SQL
$ cat << EOF | ./es_query.py http://127.0.0.1:9200 SELECT ipo_year, MAX(market_cap) AS max_market_cap FROM symbol GROUP BY ipo_year ORDER BY max_market_cap LIMIT 2EOF
{"max_market_cap": 826830000.0, "ipo_year": 1982}{"max_market_cap": 847180000.0, "ipo_year": 2016}
Elasticsearch
{ "aggs": { "ipo_year": { "terms": { "field": "ipo_year", "order": [ { "max_market_cap": "asc" } ], "size": 2 }, "aggs": { "max_market_cap": { "max": { "field": "market_cap" } } } } }, "size": 0}
{ "hits": { "hits": [], "total": 6714, "max_score": 0.0 }, "_shards": { "successful": 1, "failed": 0, "total": 1 }, "took": 20, "aggregations": { "ipo_year": { "buckets": [ { "max_market_cap": { "value": 826830000.0 }, "key": 1982, "doc_count": 4 }, { "max_market_cap": { "value": 847180000.0 }, "key": 2016, "doc_count": 6 } ], "sum_other_doc_count": 2888, "doc_count_error_upper_bound": -1 } }, "timed_out": false}
HISTOGRAM 和 ORDER BY
除了 terms aggregation,其他 aggregation 也支持 order by 但是并不完善。比如 histogram aggregation 支持 sort 但是并不支持 size (也就是可以ORDER BY 但是不能 LIMIT)。官方有计划增加一个通用的支持 LIMIT 的方式,不过还没有实现:
SQL$ cat << EOF | ./es_query.py http://127.0.0.1:9200 SELECT ipo_year_range, MAX(market_cap) AS max_market_cap FROM symbol GROUP BY histogram(ipo_year, 10) AS ipo_year_range ORDER BY ipo_year_range EOF
{"ipo_year_range": 1970, "max_market_cap": 18370000000.0}{"ipo_year_range": 1980, "max_market_cap": 522690000000.0}{"ipo_year_range": 1990, "max_market_cap": 230940000000.0}{"ipo_year_range": 2000, "max_market_cap": 470490000000.0}{"ipo_year_range": 2010, "max_market_cap": 287470000000.0}
Elasticsearch
{ "aggs": { "ipo_year_range": { "aggs": { "max_market_cap": { "max": { "field": "market_cap" } } }, "histogram": { "field": "ipo_year", "interval": 10, "order": { "_key": "asc" } } } }, "size": 0}
{ "hits": { "hits": [], "total": 6714, "max_score": 0.0 }, "_shards": { "successful": 1, "failed": 0, "total": 1 }, "took": 2, "aggregations": { "ipo_year_range": { "buckets": [ { "max_market_cap": { "value": 18370000000.0 }, "key": 1970, "doc_count": 5 }, { "max_market_cap": { "value": 522690000000.0 }, "key": 1980, "doc_count": 155 }, { "max_market_cap": { "value": 230940000000.0 }, "key": 1990, "doc_count": 598 }, { "max_market_cap": { "value": 470490000000.0 }, "key": 2000, "doc_count": 745 }, { "max_market_cap": { "value": 287470000000.0 }, "key": 2010, "doc_count": 1395 } ] } }, "timed_out": false}